Analysis of factors influencing 3-and 6-h compliance with the surviving sepsis campaign guidelines based on medical-quality intensive care unit data from China

Lu Wang1,2, Xu-Dong Ma3, Hui-Wu He1,2, Long-Xiang Su1,2, Yan-Hong Guo3, Guang-Liang Shan4, Xiang Zhou1,2, Da-Wei Liu1,2, Yun Long1,2, China National Critical Care Quality Control Center group

1Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China; 2State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China; 3Department of Medical Administration, National Health Commission of the People’s Republic of China, Beijing 100044, China; 4Department of Epidemiology and Biostatistics, Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College, Beijing 100730, China.

To the Editor: In the past decades, there were at least 31.5 million sepsis patients worldwide. Of these patients, 5.3 million sepsis patients face death every year.[1] Studies have shown the mortality from sepsis can be reduced by compliance with the surviving sepsis campaign guidelines (Csc).2,3 Compliance with guidelines depends on the execution of the medical team. We assume that the medical quality of the intensive care unit (QICU) will have an important impact on the Csc.

We designed this experiment to investigate the Csc and QICU in China. The total number of secondary and tertiary hospitals registered in China National Critical Care Quality Control Center (China-NCCQC) was 7525 in 2018. Hospitals with patients of septic shock admitted in ICUs <20/year and incomplete data were excluded from this study. Finally, 1854 hospitals were involved. The data were collected between January 1, 2018, and December 31, 2018. The quality indicators of ICUs included deep vein thrombosis (DVT) prophylaxis rate, unplanned extubation rate, reintubation rate within 48 h, rate of hyperlactatemia, 2. Completion of resuscitation with vasopressor in patients with mean arterial pressure [MAP] ≤65 mmHg after fluid resuscitation, 3. Completion of central venous pressure (CVP) and central venous oxygen saturation [ScvO2] measured in patients with lactate ≥4 mmol/L. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013). The trial protocol was approved by the Central Institutional Review Board at Peking Union Medical College Hospital (NO. S-K1297) and individual consent for this retrospective analysis was waived. The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Statistical analysis was performed using SPSS software, version 16.0 (IBM Corp., Armonk, NY, USA). The Kolmogorov-Smirnov test was employed to check whether the data were normally distributed. The results are described as mean ± standard deviation. Comparisons between multiple groups were analyzed by one-way analysis of variance (ANOVA), and pairwise comparisons after ANOVA were conducted using the Tukey multiple comparisons test. All of the statistical tests were two-tailed, and a P < 0.05 was considered to be statistically significant.

The completion of 3-h Csc is generally higher than the completion of 6-h Csc. The main constraint on the 6-h Csc is the completion of CVP and ScvO2 measured in patients with lactate ≥4 mmol/L. In the lower, higher, and highest groups of the DVT prophylaxis rate, the 6-h Csc, the sub-

Access this article online

Quick Response Code: Website: www.cmj.org
DOI: 10.1097/CM9.0000000000001362

Correspondence to: Prof. Xiang Zhou, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
E-Mail: zz_guanc@163.com

Copyright © 2021 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Chinese Medical Journal 2021;Vol(No) Received: 30-10-2020 Edited by: Peng Lyu
Figure 1: Correlation between clinical quality control indicators and compliance of surviving sepsis campaign (SSC) guidelines (C_{SSC}). Monitoring indicators included deep vein thrombosis (DVT) prophylaxis rate, unplanned extubation rate, reintubation rate within 48 h, rate of unplanned ICU admission, return rate within 48 h. Each indicator is divided into four grades according to the implementation. Each 25% from bad to good is one level, with 0, 1, 2, or 3 points. According to the scores, they are divided into the lowest group, the lower group, the higher group, and the highest group. Results are presented as mean ± standard error. * $P < 0.05$ compared to the lowest group, † $P < 0.05$ compared to the lower group, ‡ $P < 0.05$ compared to the higher group. DVT: Deep vein thrombosis; ICU: Intensive care unit.
indicators of 3-h C_{SSC} and the sub-indicators of 6-h C_{SSC} were significantly higher than those in the lowest group ($P < 0.05$) [Figure 1A]. In the higher and highest groups of the DVT prophylaxis rate, the sub-indicators of 6-h C_{SSC} were significantly higher than those in the lower group ($P < 0.05$) [Figure 1A]. In the lower, higher, and highest groups of the unplanned extubation rate within 48 h, the 6-h C_{SSC} of the sub-indicators of 3-h C_{SSC} and the sub-indicators of 6-h C_{SSC} were significantly higher than those in the lowest group ($P < 0.05$) [Figure 1B]. In the lower, higher, and highest groups of the reintubation rate within 48 h, the 6-h C_{SSC} of the sub-indicators of 3-h C_{SSC} and the sub-indicators of 6-h C_{SSC} were significantly higher than those in the lowest group ($P < 0.05$) [Figure 1C]. The highest group of the reintubation rate within 48 h, the sub-indicators of 6-h C_{SSC} were significantly higher than those in the higher group ($P < 0.05$) [Figure 1C]. In the lowest group of the reintubation rate within 48 h, 6-h C_{SSC} was significantly higher than in the lowest group of ICU readmission rates within 48 h ($P < 0.05$) [Figure 1D]. The above results indicated that factors related to 3-and 6-h C_{SSC} include DVT prophylaxis rate, unplanned extubation rate, reintubation rate within 48 h, and rate of unplanned ICU admission. In the lower and higher groups of the return rate within 48 h, 6-h C_{SSC} was significantly higher than in the lowest group of ICU readmission rates within 48 h ($P < 0.05$) [Figure 1E]. However, the same phenomenon was not observed in the hour-3 bundle [Figure 1E]. These results indicated that the relationship between C_{SSC} and the return rate within 48 h is uncertain.

The intrinsic risk of an ICU patient (the underlying disease, pathophysiologic derangements, etc) is added to the extrinsic risk created by the process of care itself. Nearly 40% require treatment. Improving the quality of care extrinsic risk created by the process of care itself. Nearly pathophysiologic derangements, etc) is added to the intrinsic risk of an ICU patient (the underlying disease, and the return rate within 48 h is uncertain.

Compared with other adverse events, factors that cause return within 48 h after transferring out of the ICU might be more complex and occur outside of the ICU. Therefore, it is difficult to effectively manage these factors that cause return within 48 h after transferring out of the ICU. The above phenomenon might be the main reason for the poor test titers of this indicator. In this study, it was found that the groups with the worst scores tended to have the worst bundle compliance compared to other groups, with significant differences, while differences between other groups were often not significant. The reason might be that C_{SSC} has been ahead of the implementation of most quality control indicators due to the universal promotion of the concept of early goal-directed therapy. As a result, the completion of quality control indicators cannot test the differences in C_{SSC}. However, for hospitals where the treatment of sepsis is still not standardized, it is still of great significance to strengthen the construction of ICU.

There are some limitations of our study. First, since only one year of data was included in this study, the relationships of Q_{ICU} on 3- and 6-h C_{SSC} could not be analyzed continuously and dynamically. Second, additional study is needed to determine whether differences in mortality from sepsis might emerge with follow-up beyond 1 year.

Funding

The study was supported by grants from the National Key R&D Program of China (No. 2020YFC0861000) and the National Natural Science Foundation of China (No. 81801901).

Conflicts of interest

None.

References

How to cite this article: Wang L, Ma XD, He HW, Su LX, Guo YH, Shan GL, Zhou X, Liu DW, Long Y. Analysis of factors influencing 3-and 6-h compliance with the surviving sepsis campaign guidelines based on medical-quality intensive care unit data from China. Chin Med J 2021;00:000–000. doi: 10.1097/CMA.0000000000001362.